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1 Introduction and Motivation

Stochastic parametrisations are widely used by weather and seasonal forecasting centres to represent
model uncertainty. Three approaches in particular have become widely used. In part this is due to
their beneficial impacts on forecast spread, improving the reliability of forecasts, though the ease of
implementation and generalisability to different models likely also plays a role. The first approach
is the ‘Stochastically Perturbed Parametrisation Tendencies’ (SPPT) scheme, which addresses model
uncertainty due to the parametrisation process (Buizza et al., 1999; Palmer et al., 2009; Yonehara and
Ujiie, 2011; Bouttier et al., 2012; Sanchez et al., 2016; Berner et al., 2015; Christensen et al., 2017;
Davini et al., 2017). It does this by perturbing the sum of the parametrised physics tendencies using
multiplicative noise:

TX = DX + (1 + e)
∑

i=1

Pi,X (1)

where TX is the total vector tendency in X, as a function of model level at a particular spatial grid
point. DX is the vector tendency from the dynamics, Pi,X is the vector tendency from the ith physics
scheme, and e is a zero mean random perturbation. The second approach is the ‘Stochastic Kinetic En-
ergy Backscatter’ (SKEB) scheme (sometimes called the Stochastically Perturbed Backscatter Scheme:
SPBS) (Shutts, 2005; Berner et al., 2009, 2012; Tennant et al., 2011; Sanchez et al., 2016). The SKEB
scheme is designed to represent a physical process absent from deterministic models, namely the up-
scale transfer of kinetic energy from small to large scales. This counteracts the kinetic energy loss at
small scales from excessive dissipation in numerical integration schemes. This backscatter is achieved
by randomly perturbing the streamfunction at large scales, with an amplitude modulated by the sub-
grid dissipation rate. The final approach uses expert elicitation to select uncertain model parameters,
and provide a bound on the possible values of these parameters (Bowler et al., 2008; Ollinaho et al.,
2013, 2017; Jankov et al., 2017). Under this ‘Random Parameter’ (RP) approach, the value of the
selected parameters is stochastically varied within this range to account for uncertainty in the forecast
due to the processes represented by these uncertain parameters.

Despite the widespread use of these three approaches, little work has been carried out to assess the
realism of these representations of model error, and in particular, how the characteristics of random
model error differ between different models. It is therefore not known whether approaches such as the
three outlined above are optimal for all operational forecast models.

A promising approach to characterise and understand model error is the use of coarse-graining
studies (Shutts and Palmer, 2007; Shutts and Pallares, 2014; Dorrestijn et al., 2013; Porta Mana and
Zanna, 2014; Bessac et al., 2019). This approach takes high-resolution atmospheric simulations, in
which the key processes of interest are resolved, as a proxy for the real atmosphere. The high-resolution

∗Atmospheric Oceanic and Planetary Physics, University of Oxford, OX1 3PU

1



simulation is coarsened to the resolution of the forecast model of interest, and the difference between
the low resolution forecast and the coarsened high-resolution simulation is considered the model error
that a stochastic parametrisation seeks to represent. Coarse-graining studies have traditionally been
computationally expensive and complicated to carry out. A modelling centre must produce both a high
resolution reference simulation and a low resolution forecast. To measure the instantaneous statistics
of model error, these forecasts must be reinitialised at (close to) every time step of the low resolution
forecast model. Recently, an alternative approach has been proposed, whereby existing high-resolution
datasets can be used to derive the initial condition and forcing files to drive a low-resolution Single
Column Model (SCM) (Christensen et al., 2018; Christensen, 2019). This allows centres that are
unable to produce high-resolution simulations to use a coarse-graining approach to characterise model
uncertainty.

At the joint 33rd Meeting of the Working Group on Numerical Experimentation (WGNE) and the
4th meeting of the Predictability, Dynamics and Ensemble Forecasting (PDEF) Working Group in
Tokyo (October 2018), a proposal was put forward for a co-ordinated activity to evaluate model error
across a number of forecast models. This document outlines a potential protocol for such an activity.

2 Outline

The intercomparison project will consist of four key stages.

1. Produce limited area high resolution simulations to use as benchmarks. Validate fidelity of these
simulations.

2. Coarse-grain these simulations to a chosen common resolution

3. Use the coarse-grained dataset to drive a number of SCM

4. Analyse model error characteristics through comparison of SCM with coarse-grained benchmark
simulations.

There are a number of key decisions that need to be made prior to launching the project, which will
depend on the priorities of participating institutes. These are outlined in the flow-chart in Figure 1.
Interested parties can indicate their willingness to participate in any of the four stages. There is no
requirement to produce both a high-resolution simulation and to perform low-resolution forecasts with
the same model.

2.1 Stage 1: High resolution simulations

A number of options were discussed at the WGNE/PDEF meeting. It was decided that new simulations
be limited area, for ease of production, and that simulations shall focus on ocean regions, to simplify
the coarse-graining protocol. It is proposed that a number of different regions be analysed, depending
on available resources. In order of priority, these regions are:

1. Indo-Pacific Warm Pool, e.g. 20oS–20oN, 42–177oE (Cascade domain). This highly studied
region was the focus of the Year of Tropical Convection (YOTC) and Years of the Maritime
Continent (YMC) initiatives. It includes a region covered by the Darwin Radar, for validation.
The period and domain of simulation will be chosen to match an Intensive Observations Period
(IOP) such as those that have already been carried out under the YMC, or the upcoming
TerraMaris field campaign (November 2019 – March 2020).

2. North Atlantic, 30oN–66oN, 60oW-5oW. An extratropical region is selected to contrast with
the tropical Indo-Pacific region. The North Atlantic is a region of key interest for studying the jet
stream and storm tracks important for forecasting European weather. The period and domain
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Figure 1: Flowchart showing the main stages for the intercomparison activity, and associated key decisions.
Colours other than blue indicate related decisions/activities
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of simulation will be chosen to coincide with the North Atlantic Waveguide and Downstream
Impact Experiment (NAWDEX) field campaign, September-October 2016, to allow for model
validation.

3. Summer Arctic e.g. North of 66oN. Recent years have seen a rapidly growing interest in polar
regions, as demonstrated by the World Meteorological Organisations Polar Prediction Project,
with its flagship activity: the Year of Polar Prediction (YOPP). Numerical weather prediction
models have historically performed poorly in polar regions, but the increase in observational
data, partly fuelled by YOPP, allows us to focus on model performance in those regions. The
period and domain of simulation will be chosen to coincide with a YOPP IOP, July-September
2018, to allow for model validation.

4. Southern Indian Ocean e.g. 60o–30oS, 20–120oE. The Southern Indian Ocean is a large region
with zonally symmetric storm tracks, providing an idealised test-case for assessing stochastic
parametrisation.

5. Tropical Atlantic e.g. 5oN–20oN, 65–15oW. The Tropical Atlantic has been used as a testbed
for understanding the role of shallow clouds in climate response, and the feedbacks between
clouds and circulation. A large number of research flights have been performed over the tropical
Atlantic. The period and domain of simulation will be chosen to coincide with the NARVAL2
field campaign – August 2016.

There is also the option of making use of existing high-resolution datasets, thereby skipping over
this first step. For example, the ESiWACE-DYAMOND project has produced a suite of global high-
resolution simulations which are publicly available. This has the benefit of not duplicating effort, and
accelerating progress within this activity, though we then have to work within the framework decided
by those who produced the high resolution datasets. For example, the DYAMOND protocol requires
3D fields to be stored only 3-hourly and only up to 20km. Even if an existing global simulation
were used, for practical reasons the coarse-graining analysis would still be carried out separately over
one or more limited area domains. Potential existing simulations include (n.b. incomplete list, and
individuals have not been approached):

• Global: ESiWACE-DYAMOND simulations. Nine modelling groups have committed to produce
sub-5km simulations for 40 days.

• Domain 2: ‘NAWDEX-AMIP’ simulations with MetUM in operational NWP configuration
(Claudio Sanchez)

• Domain 3: YOPP ‘Frontier Experiments’ at 2.5 km resolution or higher (ECCC, Met-Norway,
Meteo-France)

• Domain 5: ICON HErZ NARVAL-II HD(CP)2 simulations (Daniel Klocke, DWD and Matthias
Brueck, MPI-M) 1.2–2.5km resolution.

All new or existing simulations are expected to meet the following requirements, adapted from the
DYAMOND protocol:

• Initialisation will be from a common (e.g. ECMWF or Met Office) atmospheric analysis, and
run for the agreed period for each region using specified sea-surface temperatures.

• The high resolution simulations should be convection permitting (i.e. a resolution of 1–5 km)
and should not include parametrised deep convection. The vertical domain should extend above
the tropopause (e.g. 25-30 km or higher).
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• Models are expected to represent atmospheric processes reasonably well, and will be verified
before use in the coarse-graining analysis by comparison with observational data and analysis
products.

• Model output will be stored hourly on model levels for the prognostic variables (U , V , T , q, ql,
qi, cloud fraction) and hourly at the surface for boundary forcing (including surface sensible and
latent heat fluxes, skin temperature, SST).

• A spin-up period will be discarded from the beginning of each simulation, and the remainder
used for analysis.

A point to consider here is that if we produce our own high-resolution simulations, then we can
also produce a sister simulation at a lower resolution (or perhaps, at a range of lower resolutions).
This has been indicated as of particular interest to the HIWeather and Waves2Weather consortia.
They have developed a diagnostic for assessing upscale error growth, and attributing grown to the
representation of particular processes of interest. Other groups may also find these paired runs useful,
and they would complement the SCM analysis allowing assessment of the feedback from the errors
onto the dynamics.

2.2 Coarse Graining

The coarse-graining must be carried out separately for each high-resolution simulation. To combine the
coarse-graining procedure with the low-resolution forecast model, we adapt the methodology described
in Christensen et al. (2018). A Single Column Model (SCM) will be used to integrate forward the
equations of motion in each coarse-scale grid column.

The coarse-graining methodology is detailed in Christensen et al. (2018) and Christensen (2019).
An overview is reproduced here for ease of reference. The low-resolution forecast model’s grid is used
to define the latitude and longitude co-ordinates that make up the coarse-scale SCM grid. The fields
from the high-resolution benchmark simulation are coarsened onto the low resolution grid using local
area averaging. This allows for high-resolution grid boxes to contribute a fractional component to
several coarse-resolution grid boxes:

ψn,k =
∑

f

Wn,fψf,k (2)

where ψf denotes the field on the fine grid and ψn denotes the field on the coarsened grid. The coarse
(fine) grid box is identified by the index n (f). Wn,f indicates the fraction of fine grid box f within
coarse grid box n, and the vertical level of the field is indicated by index k.

Both the fine- and coarse-resolution datasets are defined on model levels, and interpolation must
also be performed in the vertical. We choose to perform vertical interpolation second, after first
averaging horizontally across each model level. The first field to be coarsened in this way is the
surface pressure. The low-resolution surface pressure field is used to define the pressure on the SCM
vertical levels, e.g. using the SCM’s hybrid height coefficients. The coarse-grained benchmark dataset
is then interpolated, logarithmically in pressure, from the benchmark model levels to the SCM model
levels (Christensen et al., 2018). Any data required by the SCM above the benchmark model top
will be taken from an operational analysis dataset. Finally, a 9-point gaussian smoother is applied
to all initial condition fields after coarse graining. This removes small scale features present in the
benchmark simulation that are unresolved on the low resolution grid, and which therefore appear as
grid-point noise.

The advected tendencies of the prognostic variables (T , U , V , q) are calculated along SCM model
levels from the coarsened fields:

adv(ψ)|n,k = −un,k · ∇k(ψn,k) (3)
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for variable ψ. A centred finite difference scheme is used to estimate the vector gradient in ψ before the
dot product is taken with the coarse-grained vector wind field, un,k. Any other required forcing, such
as a geostrophic wind forcing or vertical velocity forcing, are also evaluated using the coarse-grained
fields: see Christensen et al. (2018) for more details.

The constant boundary fields required by the SCM are taken from the relevant global model at
the appropriate resolution, ensuring the SCM has the same boundary conditions as the global model.
Interactive land surface processes are turned off in the SCM, and replaced with time varying latent
and sensible heat fluxes from the benchmark simulations (provided this functionality is available in
the SCM).

An open question remains as to whether to coarse-grain in time as well as space. This is a somewhat
philosophical question as to what does a grid point field represent. Previous testing has only been
carried out without coarse-graining in time, but rather using instantaneous coarse-grained fields.

NCL software has been published which coarse-grains a high-resolution MetUM simulation to
produce forcing fields for the OpenIFS SCM: https://github.com/aopp-pred/cg-cascade. The
software has been tested over the MetUM ‘Cascade’ dataset, covering the Indo-Pacific region outlined
above. Coarse-grained Cascade datasets are archived at the NERC Centre for Environmental Data
Analysis (CEDA): http://catalogue.ceda.ac.uk/uuid/bf4fb57ac7f9461db27dab77c8c97cf2.

2.3 Low-resolution SCM forecasts

Each different SCM will require an independent set of coarse-grained forcing files due to differences in
the model set-up (e.g. different vertical grids, different prognostic variables, ...). A first step is to assess
how different the input files will need to be, to understand whether the coarse-graining procedure will
need to be carried out independently for each SCM (worst case scenario) or if the input files for one
model can be transformed to those needed by the other models.

A SCM integration will be initialised once an hour for each grid box of the coarse-grained bench-
mark simulation. If the SCM exhibits a marked spin-up period over the first few timesteps (such
as the IFS SCM: see Christensen et al. (2018)), then each simulation will two hours, to the nearest
number of integer SCM timesteps. The first hour of each SCM simulation will be discarded, and the
second hour considered for analysis. This is to focus on error statistics relevant to the bulk of the
model simulation. If no spin-up period is observed then each SCM simulation will last one hour. The
SCM will not be nudged to the coarse-grained benchmark fields, but will be allowed to evolve freely.

Note that given the proposed size of the high-resolution domains, the SCM will be run inde-
pendently over many thousands of spatial grid boxes, and initialised hourly for the duration of the
benchmark simulation. Doing this efficiently and with minimal user input is a computational chal-
lenge. However, python software has been developed to facilitate this procedure and will be available
for this intercomparison activity:

• ‘scmtiles’: Python software to deploy many independent SCMs over a domain.
https://github.com/aopp-pred/scmtiles

• ‘openifs-scmtiles’: Python software to deploy the OpenIFS SCM using scmtiles.
https://github.com/aopp-pred/openifs-scmtiles

Note that ‘openifs-scmtiles’ will need to be adapted by each modelling centre to meet the needs of
their own SCM.

3 Analysis and Outcomes

• Compare the characteristics of systematic ‘model error’ across a range of models, i.e. the differ-
ence between the forecast SCM and the coarse-grained benchmark simulation.
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– Use knowledge about fidelity of the high-resolution simulations to ascribe this to deficiencies
in the SCM, or to biases in the benchmark simulation.

– Attribute errors to specific model deficiencies using parametrised tendency information.

– Assess how systematic errors are affected by different geographic regions/ flow regimes.

– Depending on priorities, consider dependency of model error on resolution across a range
of models.

• Compare the characteristics of random model error across a range of models.

– Characterise degree of state dependency of random error (e.g. within SPPT framework:
see Christensen (2019)).

– Assess stochasticity in other processes of interest specified by partners. E.g. for convective
processes, consider variability in CAPE, CIN or updraft velocity as diagnosed by the SCM
parametrisation. Discussion ahead of time will ensure the relevant benchmark simulation
and SCM outputs are archived by all centres.

– To assess RP will require a set of SCM simulations in which parameters are perturbed
for each SCM simulation. Searching over a large parameter space will be computationally
expensive, but this could nevertheless be chosen as a priority.

– Assess how random errors are affected by different geographic regions/ flow regimes.

– Depending on priorities, also assess dependency on resolution.

– N.b. It is not easy to assess SKEB in this framework, because there is no feedback from
the SCM onto the large-scale state, and therefore no upscale cascade.

4 Next steps and open questions

• Which modelling centres are interested in participating in this activity?

• What existing high-resolution simulations are available, and are they suitable for our purpose?

• Which modelling groups have the capability and inclination to produce new high-resolution
simulations for this activity? How many days of simulation would be possible (in total) and at
what resolution?

• For groups interested in running a SCM, what initial condition files and forcing fields are needed
by their model and on what vertical grid?

• What are the key priorities of the interested groups? How would groups choose to prioritise
their time and resources from among the range of possible research paths?

• Where will the high-resolution data be stored? Can it be moved to where each SCM will be
run? Or can other groups run their SCM where the data will be stored?

• Are there other research questions that we would like to consider? For example, are there other
specific stochastic approaches that could be assessed (e.g. the Plant-Craig scheme)

• Any other feedback on the proposed framework?
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