

Most cloudy grid point (400 hPa) across "random" (regular) array of 10 poin

ARPEGE

- What algorithm is exactly used for ARPEGE initialisation?
- Can we rerun a subset with alternative initialization?

• Would the precipitation statistics match IFS/GFS better, if the same initialisation procedure were applied?

- If for ARPEGE T is adjusted to "before condensation",
- $\rightarrow \nabla T$ has probably been recomputed??
- → Changes advection of T??

Changing physical AND dynamical tendencies of T is also associated with changes in dynamical tendencies of u,v: since differential heating by physics drives the gradients of T and divergence/convergence. Furthermore, T tendencies affect pressure. To reset to "pre-cloud"—state, one might also redo momentum and geostrophic advection (ok, far-fetching!).

ARPEGE

- What algorithm is exactly used for ARPEGE initialisation?
- Can we rerun a subset with alternative initialization?

ter, if the same initialisation procedure were

Chang so associated with changes in dynamical tendencies of u,v: since differential heating by physics drives the gradients of T and divergence/convergence. Furthermore, T tendencies affect pressure. To reset to "pre-cloud"—state, one might also redo momentum and geostrophic advection (ok, far-fetching!).

GFS/RAP

- GFS and RAP with smoothened dynamics (denoising...)?
- → Would this an internal effect within the SCMs or has it been possible to manage this noise?
- → Could there be a vertical shift between T/q tendencies and u/v tendencies (compared to ICON data) perhaps?

Suggestion

We may use a common subset for a few further experiments

What I have run with alternative namelist: 25th, 26th, 27th, 28th, 29th
Each of them starting 00 and 12 UTC

Comparison of two surface couplings, flux vs. flux + SST

30 mins accumulation

Temperature profile differences

- Default vs. ICON-forced namelists
- Lines indicate mean, 5th and 95th percentile at each pressure level

Comparison of two surface couplings

• 6h accumulation fluxes

Further MUMIP matters

• Other alternative namelist shows comparable results (slightly larger deviations u, v, q, because of stationary rather than moving pressure systems, but slightly weaker T perturbations)

Also

→ Preparing 1-2 manuscripts based on poster September and MUMIP work (also in EGU abstract)

Probably we need to compile a structure like a technical report about MUMIP datasets