Stochastic Parametrisation
References
Please find below a range of resources and references to help you learn more about stochastic parametrisations, their development, and their validation.
Review articles
Berner, J., Achatz, U., Batté, L., Bengtsson, L., De La Cámara, A., Christensen, H. M., … Yano, J.-I. (2017). Stochastic parameterization: toward a new view of weather and climate models. Bulletin of the American Meteorological Society, 98(3). https://doi.org/10.1175/BAMS-D-15-00268.1
Palmer, T.N. (2019) Stochastic weather and climate models. Nat Rev Phys 1, 463–471. https://doi.org/10.1038/s42254-019-0062-2
Theory
Ewald, B., and C. Penland, (2009). Numerical generation of stochastic differential equations in climate models, Handbook of numerical analysis: Computational Methods for the Atmosphere and the Oceans, 14, 279-306.
Gardiner, C.W. (1985). Handbook of Stochastic Methods, Springer, Berlin. (Chapter 6 gives a readable version of Papanicolaou and Kohler 1974).
Hasselmann, (1975). Stochastic climate models part I. Theory.Tellus, https://doi.org/10.3402/tellusa.v28i6.11316
Papanicolaou, G. C, and Kohler, W., (1974). "Asymptotic Theory of Mixing Stochastic Ordinary Differential Equations," Communications on Pure and Applied Mathematics, 27, pp. 641-668. https://doi.org/10.1002/cpa.3160270503
Penland, C., (2003). Noise out of chaos and why it won't go away. Bulletin of the American Meteorological Society, 84, 921-925. https://doi.org/10.1175/BAMS-84-7-921
Penland, C., (2003). A Stochastic approach to Nonlinear Dynamics: A Review (Electonic supplement to 'Noise out of chaos and why it won't go away'). Bulletin of the American Meteorological Society, 84, ES43-ES51.
Rüemelin, W., (1982), Numerical treatment of stochastic differential equations, SIAM J. Numer. Math., 19 (1982), no. 3, 604–613. https://doi.org/10.1137/0719041
Data-driven approaches to developing stochastic parametrisations
Arnold, H. M., Moroz, I. M., & Palmer, T. N., (2013). Stochastic parametrizations and model uncertainty in the Lorenz ’96 system. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1991), 20110479–20110479. https://doi.org/10.1098/rsta.2011.0479
Christensen, H. M., (2020). Constraining stochastic parametrisation schemes using high-resolution simulations. Quarterly Journal of the Royal Meteorological Society, 146(727). https://doi.org/10.1002/qj.3717
Shutts, G. J., & Palmer, T. N., (2007). Convective forcing fluctuations in a cloud-resolving model: Relevance to the stochastic parameterization problem. Journal of Climate, 20(2), 187–202. https://doi.org/10.1175/JCLI3954.1
Shutts, G. J. & Pallares, A. C., (2014), Assessing parametrization uncertainty associated with horizontal resolution in numerical weather prediction models. Phil. Trans. R. Soc. 372 (2018), http://doi.org/10.1098/rsta.2013.0284
Physically motivated stochastic parametrisations
Bengtsson, L., Körnich, H., Källén, E., Svensson, G., 2011: Large-Scale Dynamical Response to Subgrid-Scale Organization Provided by Cellular Automata. Journal of the Atmospheric Sciences Volume 68, Issue 12 pp. 3132-3144.
Bengtsson, L., M. Steinheimer, P. Bechtold, and J.-F. Geleyn, 2013: A stochastic parameterization for deep convection using cellular automata, Quarterly Journal of the Royal Meteorological Society, 139 (675) .
Bengtsson, L., Körnich, H., 2016: Impact of a stochastic parameterization of cumulus convection, using cellular automata, in a meso-scale ensemble prediction system. Quarterly Journal of the Royal Meteorological Society. Q.J.R. Meteorol. Soc., 142: 1150–1159. doi: 10.1002/qj.2720
Bengtsson, L., Dias, J., Tulich, S., Gehne, M., & Bao, J.‐W. (2021). A stochastic parameterization of organized tropical convection using cellular automata for global forecasts in NOAA's Unified Forecast System. Journal of Advances in Modeling Earth Systems, 13, e2020MS002260. https://doi.org/10.1029/2020MS002260
Sakradzija, M., A. Seifert, and A. Dipankar, 2016: A stochastic scale-aware parameterization of shallow cumulus convection across the convective gray zone, Journal of Advances in Modeling Earth Systems, 8, doi:10.1002/2016MS000634
Sakradzija, M., and D. Klocke, 2018: Physically constrained stochastic shallow convection in realistic kilometer-scale simulations, Journal of Advances in Modeling Earth Systems, 10, doi: 10.1029/2018MS001358
Sakradzija M., F. Senf, L. Scheck, M. Ahlgrimm, and D. Klocke, 2020: Local impact of stochastic shallow convection on clouds and precipitation in the tropical Atlantic, Mon. Wea. Rev., 148, 12, 5041–5062, doi.org/10.1175/MWR-D-20-0107.1.
Operational approaches
Bengtsson, L., J. Bao, P. Pegion, C. Penland, S. Michelson, and J. Whitaker, 2019: A Model Framework for Stochastic Representation of Uncertainties Associated with Physical Processes in NOAA’s Next Generation Global Prediction System (NGGPS). Mon. Wea. Rev., 147, 893–911, https://doi.org/10.1175/MWR-D-18-0238.1
Lang, S. T. K., Lock, S.‐J., Leutbecher, M, Bechtold, P, Forbes, R. M., (2021), Revision of the Stochastically Perturbed Parametrisations model uncertainty scheme in the Integrated Forecasting System. Q J R Meteorol Soc., 147: 1364– 1381. https://doi.org/10.1002/qj.3978
Leutbecher, M., Lock, S.‐J., Ollinaho, P., Lang, S. T. K., Balsamo, G., Bechtold, P., ... and Weisheimer, A. (2017), Stochastic representations of model uncertainties at ECMWF: state of the art and future vision. Q.J.R. Meteorol. Soc, 143: 2315-2339. https://doi.org/10.1002/qj.3094
Lock, S‐J, Lang, STK, Leutbecher, M, Hogan, RJ, Vitart, F, (2019). Treatment of model uncertainty from radiation by the Stochastically Perturbed Parametrization Tendencies (SPPT) scheme and associated revisions in the ECMWF ensembles. Q J R Meteorol Soc., 145 ( Suppl. 1): 75‐ 89. https://doi.org/10.1002/qj.3570
Palmer, T. N., Buizza, R., Doblas-Reyes, F., Jung, T., Leutbecher, M., Shutts, G.J., Steinheimer, M. and Weisheimer, A., 2009. Stochastic Parametrization and Model Uncertainty. ECMWF Tech. Memo 598, http://doi.org/10.21957/ps8gbwbdv
Verification of ensemble forecasts
Ferro, C. A. T., Richardson, D. S. and Weigel, A. P., (2008), On the effect of ensemble size on the discrete and continuous ranked probability scores. Met. Apps, 15: 19-24. https://doi.org/10.1002/met.45
Ferro, C.A.T., (2014), Fair scores for ensemble forecasts. Q.J.R. Meteorol. Soc., 140: 1917-1923. https://doi.org/10.1002/qj.2270
Leutbecher, M., (2019) Ensemble size: How suboptimal is less than infinity? Q J R Meteorol Soc. 145 ( Suppl. 1): 107– 128. https://doi.org/10.1002/qj.3387